SOLUTIONS OF A GOŁA̧B–SCHINZEL-TYPE FUNCTIONAL EQUATION BOUNDED ON ‘BIG’ SETS IN AN ABSTRACT SENSE
نویسندگان
چکیده
منابع مشابه
On Hilbert Golab-Schinzel type functional equation
Let $X$ be a vector space over a field $K$ of real or complex numbers. We will prove the superstability of the following Go{l}c{a}b-Schinzel type equation$$f(x+g(x)y)=f(x)f(y), x,yin X,$$where $f,g:Xrightarrow K$ are unknown functions (satisfying some assumptions). Then we generalize the superstability result for this equation with values in the field of complex numbers to the case of an arbitr...
متن کاملOn a new type of stability of a radical cubic functional equation related to Jensen mapping
The aim of this paper is to introduce and solve the radical cubic functional equation $fleft(sqrt[3]{x^{3}+y^{3}}right)+fleft(sqrt[3]{x^{3}-y^{3}}right)=2f(x)$. We also investigate some stability and hyperstability results for the considered equation in 2-Banach spaces.
متن کاملFUZZY BOUNDED SETS AND TOTALLY FUZZY BOUNDED SETS IN I-TOPOLOGICAL VECTOR SPACES
In this paper, a new definition of fuzzy bounded sets and totallyfuzzy bounded sets is introduced and properties of such sets are studied. Thena relation between totally fuzzy bounded sets and N-compactness is discussed.Finally, a geometric characterization for fuzzy totally bounded sets in I- topologicalvector spaces is derived.
متن کاملOn Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces
In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[ fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),] where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generaliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2010
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972709001099